Name: \qquad Date: \qquad

Lesson 11.2 Area of a Circle

Solve. Show your work.

Example

The radius of a circular plate is 6 inches. Find its area. Use 3.14 as an approximation for π.

$$
\begin{aligned}
\text { Area } & =\pi r^{2} \\
& \approx \frac{3.14}{} \cdot \frac{6}{6} \cdot 6 \\
& =\underline{113.04} \mathrm{in.}^{2}
\end{aligned}
$$

The area of the plate is approximately 113.04 square inches.

1. Find the area of a circle that has a radius of 5 centimeters. Use 3.14 as an approximation for π.

Area $=\pi r^{2}$
\qquad
\qquad - \qquad
$=$ \qquad cm^{2}

The area of the circle is approximately \qquad square centimeters.
2. Find the area of a circle that has a radius of 63 millimeters. Use $\frac{22}{7}$ as an approximation for π.

Name: \qquad Date:

Solve. Show your work.

Example

The diameter of a circle is 18 centimeters. Find its area. Use 3.14 as an approximation for π.

Radius $=$ diameter $\div 2$

$$
=\underline{18} \div 2
$$

$$
=9
$$

Area $=\pi r^{2}$

$$
\begin{aligned}
& \approx \underline{3.14} \cdot \underline{9} \cdot \underline{9} \\
& =\underline{254.34} \mathrm{~cm}^{2}
\end{aligned}
$$

The area of the circle is approximately $\underline{254.34}$ square centimeters.
3. Find the area of a circle that has a diameter of 56 feet. Use $\frac{22}{7}$ as an approximation for π.

$$
\begin{aligned}
\text { Radius } & =\text { diameter } \div 2 \\
& = \\
& =\text { fren } \div 2 \\
\text { Area }= & \pi r^{2} \\
& \approx \\
= & \mathrm{ft}^{2}
\end{aligned}
$$

The area of the circle is approximately \qquad square feet.

Name: \qquad Date: \qquad
4. Find the area of a circle that has a diameter of 210 meters. Use $\frac{22}{7}$ as an approximation for π.

Solve. Show your work.

Example

The diameter of a circle is 30 inches. Find the area of a semicircle. Use 3.14 as an approximation for π.

$$
\begin{aligned}
\text { Radius } & =\text { diameter } \div 2 \\
& =\frac{30}{} \div 2 \\
& =15 \mathrm{in.}
\end{aligned}
$$

Area of semicircle $=\frac{1}{2} \cdot$ area of circle

$$
\begin{aligned}
& =\frac{1}{2} \cdot \pi r^{2} \\
& \approx \frac{1}{2} \cdot \frac{3.14}{15} \cdot \frac{15}{}=\underline{353.25} \mathrm{in}^{2}
\end{aligned}
$$

The area of the semicircle is approximately 353.25 square inches.
5. The diameter of a circle is 4 feet. Find the area of the semicircle. Use 3.14 as an approximation for π.

Radius $=$ diameter $\div 2$
\qquad
$=$ \qquad ft

Area of semicircle $=\frac{1}{2} \cdot$ area of circle

$$
\begin{aligned}
& =\frac{1}{2} \cdot \pi r^{2} \\
& \approx \frac{1}{2} \cdot \square \cdot \\
& = \\
& \mathrm{ft}^{2}
\end{aligned}
$$

The area of the semicircle is approximately \qquad square feet.
6. The radius of a circle is 10 centimeters. Find the area of the semicircle. Use 3.14 as an approximation for π.

Name: \qquad
\qquad

Solve. Show your work.

Example

The radius of a circle is 8 centimeters. Find the area of the quadrant. Use $\frac{22}{7}$ as an approximation for π.

Area of quadrant $=\frac{1}{4} \cdot$ area of circle

$$
\begin{aligned}
& =\frac{1}{4} \cdot \pi r^{2} \\
& \approx \frac{1}{4} \cdot \frac{\frac{22}{7}}{50 \frac{2}{7}} \cdot \frac{8}{c 口^{2}} \cdot 8 \\
& =\frac{8}{}
\end{aligned}
$$

The area of the quadrant is approximately $50 \frac{2}{7}$ square centimeters.
7. The diameter of a circle is 12 inches. Find the area of the quadrant. Use $\frac{22}{7}$ as an approximation for π.

Radius $=$ diameter $\div 2$

$$
\begin{aligned}
& =\quad \div 2 \\
& =\quad \text { in. }
\end{aligned}
$$

Area of quadrant $=\frac{1}{4} \cdot$ area of circle

$$
=\frac{1}{4} \cdot \pi r^{2}
$$

$$
\approx \frac{1}{4}
$$

\qquad . \qquad . \qquad

$$
=
$$

\qquad in. ${ }^{2}$

The area of the quadrant is approximately \qquad square inches.

Name: \qquad

Date:
8. The radius of a circle is 20 meters. Find the area of the quadrant. Use $\frac{22}{7}$ as an approximation for π.

$$
\begin{aligned}
\text { Area of quadrant } & =\frac{1}{4} \cdot \text { area of circle } \\
& =\frac{1}{4} \cdot \pi r^{2} \\
& \approx \frac{1}{4} \cdot \square \cdot \\
& =\ldots \mathrm{m}^{2}
\end{aligned}
$$

The area of the quadrant is approximately \qquad square meters.
9. The diameter of a circle is 70 meters. Find the area of the quadrant. Use $\frac{22}{7}$ as an approximation for π.

Area of square $V W X Y=\ell^{2}$

$$
\begin{aligned}
& =\underline{11} \cdot \underline{11} \\
& =\underline{121} \mathrm{ft}^{2}
\end{aligned}
$$

Area of trapezoid STWX

$$
\begin{aligned}
= & \text { area of trapezoid STVY } \\
& + \text { area of square } V W X Y \\
= & \underline{242}+\underline{121} \\
= & \underline{363} \mathrm{ft}^{2}
\end{aligned}
$$

The area of trapezoid STWX is $\underline{363}$ square feet.
6. 65 square centimeters
7. 49.5 square feet
8. 495 square inches

Chapter 11

Lesson 11.1

1. 3.236
2. 5.051
3. 4.65
4. 7.755
5. 18.48
6. 18.84
7. 3.56
8. 0.34
9. 22
10. 60
11. 20.1
12. 1.0
13. $\overline{J M}$ and $\overline{K N}$.
14. $\overline{H K}$. It does not pass through the center O.
15. $\overline{O J}, \overline{O K}, \overline{O L}, \overline{O M}$, and $\overline{O N}$.
16. Diameter $=$ radius $\times \underline{2}$

$$
\begin{aligned}
& =\underline{13} \times \underline{2} \\
& =\underline{26} \mathrm{ft}
\end{aligned}
$$

The diameter of the circle is $\underline{26}$ feet.
17. 6.5 feet
18. Radius $=$ diameter $\div \underline{2}$

$$
\begin{aligned}
& =\underline{32} \div \underline{2} \\
& =\underline{16} \mathrm{in} .
\end{aligned}
$$

The radius of the circle is $\underline{16}$ inches.
19. 12.3 centimeters
20. Circumference $=\pi d$

$$
\begin{aligned}
& \approx \frac{22}{7} \cdot \underline{21} \\
& =\underline{22} \cdot \underline{3} \\
& =\underline{66} \mathrm{in} .
\end{aligned}
$$

The circumference of the wheel is approximately 66 inches.
21. 125.6 millimeters
22. Circumference $=\pi d$

$$
\begin{aligned}
& \approx \underline{3.14} \cdot \underline{15} \\
& =\underline{47.1} \mathrm{in} .
\end{aligned}
$$

Length of semicircular arc
$=\frac{1}{2} \times$ circumference
$=\frac{1}{2} \times \underline{47.1}$
$=\underline{23.55} \mathrm{in}$.
The length of the ruler is approximately 23.55 inches.
23. 64.25 centimeters
24. Circumference $=2 \pi r$

$$
\begin{aligned}
& \approx 2 \cdot \underline{3.14} \cdot \underline{25} \\
& =\underline{157} \mathrm{in} .
\end{aligned}
$$

Length of arc of quadrant
$=\frac{1}{4} \times$ circumference
$=\frac{1}{4} \times \underline{157}$
$=\underline{39.25} \mathrm{in}$.
The length of the arc of the quadrant is approximately 39.25 inches.
25. 77 millimeters
26. Circumference $=\pi d$

$$
\begin{aligned}
& \approx \underline{3.14} \cdot \underline{26} \\
& =\underline{81.64} \mathrm{~cm}
\end{aligned}
$$

Length of arc of quadrant
$=\frac{1}{4} \times$ circumference
$=\frac{1}{4} \times \underline{81.64}$
$=\underline{20.41} \mathrm{~cm}$
Distance around the figure
$=$ length of arc of quadrant $+6 \cdot \underline{\frac{26}{2}}+2 \cdot \underline{26}$
$=20.41+\underline{78}+\underline{52}$
$=\underline{150.41} \mathrm{~cm}$
The distance around the figure is approximately 150.41 centimeters.
27. 50 inches
28. 58.5 feet

Lesson 11.2

1. Area $=\pi r^{2}$

$$
\begin{aligned}
& \approx \underline{3.14} \cdot \underline{5} \cdot \underline{5} \\
& =\underline{78.5} \mathrm{~cm}^{2}
\end{aligned}
$$

The area of the circle is approximately 78.5 square centimeters.
2. 12,474 square millimeters
3. Radius $=$ diameter $\div 2$

$$
\begin{aligned}
& =\underline{56} \div 2 \\
& =\underline{28} \mathrm{ft}
\end{aligned}
$$

Area of circle $=\pi r^{2}$

$$
\begin{aligned}
& \approx \frac{22}{7} \times \underline{28} \times \underline{28} \\
& =\underline{2,464} \mathrm{ft}^{2}
\end{aligned}
$$

The area of the circle is approximately 2,464 square feet.
4. 34,650 square meters
5. Radius $=$ diameter $\div 2$

$$
\begin{aligned}
& =\underline{4} \div 2 \\
& =\underline{2} \mathrm{ft}
\end{aligned}
$$

Area of semicircle
$=\frac{1}{2} \cdot$ area of circle
$=\frac{1}{2} \cdot \pi r^{2}$
$\approx \frac{1}{2} \cdot \underline{3.14} \cdot \underline{2} \cdot \underline{2}$
$=\underline{6.28} \mathrm{ft}^{2}$
The area of the semicircle is approximately 6.28 square feet.
6. 157 square centimeters
7. Radius $=$ diameter $\div 2$

$$
\begin{aligned}
& =\underline{12} \div 2 \\
& =\underline{6} \text { in. }
\end{aligned}
$$

Area of quadrant
$=\frac{1}{4} \cdot$ area of circle
$=\frac{1}{4} \cdot \pi r^{2}$
$\approx \frac{1}{4} \cdot \frac{22}{7} \cdot \underline{6} \cdot \underline{6}$
$=28 \frac{2}{7} \mathrm{in}^{2}$
The area of the quadrant is approximately
$28 \frac{2}{7}$ square inches.
8. Area of quadrant
$=\frac{1}{4} \cdot$ area of circle
$=\frac{1}{4} \cdot \pi r^{2}$
$\approx \frac{1}{4} \cdot \frac{22}{7} \cdot \underline{20} \cdot \underline{20}$
$=314 \frac{2}{7} \mathrm{~m}^{2}$
The area of the quadrant is approximately
$314 \frac{2}{7}$ square meters.
9. $962 \frac{1}{2}$ square meters

Lesson 11.3

1. Circumference $=2 \pi r$

$$
\begin{aligned}
& \approx 2 \cdot \underline{3.14} \cdot \underline{6} \\
& =\underline{37.68} \mathrm{in} .
\end{aligned}
$$

The circumference of the lid is approximately 37.68 inches.
2. 75.36 millimeters
3. 50.24 inches
4. Radius $=$ diameter $\div 2$

$$
\begin{aligned}
& =\underline{2.8} \div 2 \\
& =\underline{1.4} \mathrm{~cm}
\end{aligned}
$$

Area $=\pi r^{2}$

$$
\begin{aligned}
& \approx \frac{22}{7} \cdot \underline{1.4} \cdot \underline{1.4} \\
& =\underline{6.16} \mathrm{~cm}^{2}
\end{aligned}
$$

The area of the circle is approximately 6.16 square centimeters.
5. 19.625 square centimeters
6. Length of arcs of three quadrants
$=3 \cdot \frac{1}{4} \cdot \pi d$
$\approx \frac{3}{4} \cdot \underline{3.14} \cdot \underline{5.2}$
$=\underline{12.246} \mathrm{in}$.
Side length of square $=\frac{5.2}{4}$ in.
Distance around stencil
$=$ length of arcs of three quadrants $+4 \cdot$ side length of square
$=\underline{12.246}+4 \cdot \underline{\frac{5.2}{4}}$
$=\underline{12.246}+\underline{5.2}$
$=17.446 \mathrm{in}$.
$\approx 17.4 \mathrm{in}$.
The distance around the stencil is approximately 17.4 inches.
7. 539.64 feet
8. Radius $=$ diameter $\div 2$

$$
\begin{aligned}
& =\underline{10} \div 2 \\
& =\underline{5} \mathrm{~cm}
\end{aligned}
$$

Area of circle $=\pi r^{2}$

$$
\begin{aligned}
& \approx \underline{3.14} \cdot \underline{5} \cdot \underline{5} \\
& =\underline{78.5} \mathrm{~cm}^{2}
\end{aligned}
$$

Area of quadrants
$=2 \cdot \frac{1}{4} \cdot \pi r^{2}$
$\approx \frac{1}{2} \cdot \underline{3.14} \cdot \underline{2.5} \cdot \underline{2.5}$
$=\underline{9.8125} \mathrm{~cm}^{2}$
Area of remaining paper
$=$ area of circle - area of quadrants
$=\underline{78.5}-\underline{9.8125}$
$=68.6875$
$\approx 68.7 \mathrm{~cm}^{2}$
The area of the remaining paper is approximately 68.7 square centimeters.
9. 304.92 square centimeters

