Lesson 11.2 Area of a Circle

Solve. Show your work.

1. Find the area of a circle that has a radius of 5 centimeters. Use 3.14 as an approximation for π .

The area of the circle is approximately ______ square centimeters.

2. Find the area of a circle that has a radius of 63 millimeters. Use $\frac{22}{7}$ as an approximation for π .

Data	
Dute.	

Solve. Show your work.

3. Find the area of a circle that has a diameter of 56 feet. Use $\frac{22}{7}$ as an approximation for π .

The area of the circle is approximately ______ square feet.

Name: .

4. Find the area of a circle that has a diameter of 210 meters. Use $\frac{22}{7}$ as an approximation for π .

Solve. Show your work.

5. The diameter of a circle is 4 feet. Find the area of the semicircle. Use 3.14 as an approximation for π .

The area of the semicircle is approximately ______ square feet.

6. The radius of a circle is 10 centimeters. Find the area of the semicircle. Use 3.14 as an approximation for π .

Date: _____

Solve. Show your work.

7. The diameter of a circle is 12 inches. Find the area of the quadrant. Use $\frac{22}{7}$ as an approximation for π .

Radius = diameter ÷ 2 = _____ ÷ 2 = _____ in. Area of quadrant = $\frac{1}{4} \cdot \text{area of circle}$ = $\frac{1}{4} \cdot \pi r^2$ $\approx \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4}$

The area of the quadrant is approximately ______ square inches.

D	at	e	:	
-	~ ~	~	•	_

8. The radius of a circle is 20 meters. Find the area of the quadrant. Use $\frac{22}{7}$ as an approximation for π .

The area of the quadrant is approximately ______ square meters.

9. The diameter of a circle is 70 meters. Find the area of the quadrant. Use $\frac{22}{7}$ as an approximation for π .

Area of square $VWXY = \ell^2$ $= 11 \cdot 11$ $= 121 \text{ ft}^2$ Area of trapezoid *STWX* $= \text{ area of trapezoid$ *STVY* $}$ $+ \text{ area of square$ *VWXY* $}$ = 242 + 121 $= 363 \text{ ft}^2$ The area of trapezoid *STWX* is 363 square feet. **6.** 65 square centimeters **7.** 49.5 square feet

8. 495 square inches

Chapter 11

Lesson 11.1

- 1. 3.236
 2. 5.051
 3. 4.65

 4. 7.755
 5. 18.48
 6. 18.84

 7. 3.56
 8. 0.34
 9. 22

 10. 60
 11. 20.1
 12. 1.0
- **13.** \overline{JM} and \overline{KN} .
- **14.** \overline{HK} . It does not pass through the center O.
- **15.** \overline{OJ} , \overline{OK} , \overline{OL} , \overline{OM} , and \overline{ON} .
- **16.** Diameter = radius \times 2
 - = <u>13</u> × <u>2</u>

The diameter of the circle is 26 feet.

- **17.** 6.5 feet
- **18.** Radius = diameter ÷ 2

$$=$$
 32 \div 2
= 16 in.

The radius of the circle is 16 inches.

19. 12.3 centimeters

20. Circumference = πd

$$\approx \frac{22}{7} \cdot \underline{21}$$
$$= \underline{22} \cdot \underline{3}$$
$$= 66 \text{ in.}$$

The circumference of the wheel is approximately $\underline{66}$ inches.

21. 125.6 millimeters

22. Circumference = πd

$$\approx 3.14 \cdot 15$$

= 47.1 in.

Length of semicircular arc

$$=\frac{1}{2}$$
 × circumference

$$=\frac{1}{1} \times 47.1$$

The length of the ruler is approximately 23.55 inches.

23. 64.25 centimeters
24. Circumference =
$$2\pi r$$

 $\approx 2 \cdot 3.14 \cdot 25$
 $= 157$ in.
Length of arc of quadrant
 $= \frac{1}{4} \times \text{circumference}$
 $= \frac{1}{4} \times 157$
 $= 39.25$ in.
The length of the arc of the quadrant is
approximately 39.25 inches.
25. 77 millimeters
26. Circumference = πd
 $\approx 3.14 \cdot 26$
 $= 81.64$ cm
Length of arc of quadrant
 $= \frac{1}{4} \times 81.64$
 $= 20.41$ cm
Distance around the figure
 $= \text{length of arc of quadrant + 6} \cdot \frac{26}{2} + 2 \cdot 26$
 $= 20.41 + 78 + 52$
 $= 150.41$ cm
The distance around the figure is approximately
 150.41 centimeters.
27. 50 inches
28. 58.5 feet
Lesson 11.2
1. Area = πr^2
 $\approx 3.14 \cdot 5 \cdot 5$
 $= 78.5 \text{ cm}^2$

<u>78.5</u> square centimeters.**2.** 12,474 square millimeters

3. Radius = diameter ÷ 2

Area of circle =
$$\pi r^2$$

$$\approx \frac{\frac{22}{7}}{7} \times \frac{28}{28} \times \frac{28}{28}$$

The area of the circle is approximately

The area of the circle is approximately <u>2,464</u> square feet.

4. 34,650 square meters

5. Radius = diameter ÷ 2

$$= 4 \div 2$$

$$= 2 \text{ ft}$$
Area of semicircle

$$= \frac{1}{2} \cdot \text{ area of circle}$$

$$= \frac{1}{2} \cdot \pi r^{2}$$

$$\approx \frac{1}{2} \cdot \frac{3.14}{2} \cdot 2 \cdot 2$$

$$= 6.28 \text{ ft}^{2}$$

The area of the semicircle is approximately <u>6.28</u> square feet.

6. 157 square centimeters

7. Radius = diameter \div 2

$$= 12 ÷ 2$$

 $= 6 in.$

Area of quadrant

$$= \frac{1}{4} \cdot \text{area of circle}$$
$$= \frac{1}{4} \cdot \pi r^{2}$$
$$\approx \frac{1}{4} \cdot \frac{22}{7} \cdot \underline{6} \cdot \underline{6}$$
$$= 28\frac{2}{7} \text{ in.}^{2}$$

The area of the quadrant is approximately $28\frac{2}{7}$ square inches.

8. Area of quadrant

$$= \frac{1}{4} \cdot \text{area of circle}$$

$$= \frac{1}{4} \cdot \pi r^{2}$$

$$\approx \frac{1}{4} \cdot \frac{22}{7} \cdot \underline{20} \cdot \underline{20}$$

$$= 314\frac{2}{7} \text{ m}^{2}$$

The area of the quadrant is approximately $\frac{314\frac{2}{7}}{962\frac{1}{2}}$ square meters. 9. $962\frac{1}{2}$ square meters

Lesson 11.3

1. Circumference =
$$2\pi r$$

$$\approx 2 \cdot \underline{3.14} \cdot \underline{6}$$

= <u>37.68</u> in.

The circumference of the lid is approximately 37.68 inches.

- 2. 75.36 millimeters
- 3. 50.24 inches

4. Radius = diameter \div 2

$$= 2.8 \div 2$$

 $= 1.4$ cm

Area =
$$\pi r^2$$

 $\approx \frac{\frac{22}{7}}{\frac{7}{2}} \cdot \underline{1.4} \cdot \underline{1.4}$
= $\underline{6.16}$ cm²

The area of the circle is approximately <u>6.16</u> square centimeters.

- 5. 19.625 square centimeters
- 6. Length of arcs of three quadrants

$$= 3 \cdot \frac{1}{4} \cdot \pi d$$
$$\approx \frac{3}{4} \cdot \frac{3.14}{4} \cdot \frac{5.2}{4}$$

Side length of square $=\frac{5.2}{4}$ in. Distance around stencil

= length of arcs of three quadrants + 4 · side length of square

$$= 12.246 + 4 \cdot \frac{5.2}{4}$$

≈ 17.4 in.

The distance around the stencil is approximately <u>17.4</u> inches.

• <u>5</u>

7. 539.64 feet

=

2

=

8. Radius = diameter \div 2

$$= \underline{10} \div 2$$
$$= \underline{5} \text{ cm}$$
Area of circle = πr^2
$$\approx \underline{3.14} \cdot \underline{5} \cdot \underline{-78.5} \text{ cm}^2$$
Area of quadrants

$$= 2 \cdot \frac{1}{4} \cdot \pi r^{2}$$

= $\frac{1}{2} \cdot \frac{3.14}{2} \cdot \frac{2.5}{2.5} \cdot \frac{2.5}{2.5}$
= $\frac{9.8125}{2}$ cm²

Area of remaining paper

= area of circle – area of quadrants

≈ <u>68.7</u> cm²

The area of the remaining paper is approximately <u>68.7</u> square centimeters.

9. 304.92 square centimeters